From CFGparadigms

Revision as of 18:46, 6 April 2010 by Heather Buschman (Talk | contribs)
(diff) ← Older revision | Current revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Galectin-9 is the best-studied of the tandem-repeat galectins and the crystal structure of the N-terminal carbohydrate recognition domain (CRD) is known. In addition, galectin-9...

  • uniquely binds poly-N-acetyllactosamine sequences by recognizing internal N-acetyllactosamine repeats[1]
  • binds distinct ligands from galectin-1[2]
  • has three well-characterized linker domains between the CRDs, generated by alternative splicing, that regulate cellular localization and function of the protein
  • is the only tandem-repeat galectin that has been administered in animal models of disease to assess therapeutic potential[3][4][5]
  • null mice have increased susceptibility to autoimmune disease
  • binds to a unique glycoprotein ligand Tim-3 expressed in Th1 and Th17 cells[4][6][7][8]


CFG Participating Investigators contributing to the understanding of this paradigm

CFG Participating Investigators (PIs) contributing to the understanding of galectin-1 include: Linda Baum, Richard Cummings, Gabriel Rabinovich, Sachiko Sato

Progress toward understanding this GBP paradigm

Carbohydrate ligands

Cellular expression


Biological roles of GBP-ligand interaction

CFG resources used in investigations

The best examples of CFG contributions to this paradigm are described below, with links to specific data sets. For a complete list of CFG data and resources relating to this paradigm, see the CFG database search results for galectin-9.

Glycan profiling

Glycogene microarray

Knockout mouse lines

Glycan array

Investigators have used CFG carbohydrate compounds and glycan array to study ligand binding specificity of galectin-9.

Related GBPs

Galectins-4, -6, -8, and -12


  1. Nagae, M. et al. Structural analysis of the recognition mechanism of poly-N-acetyllactosamine by the human galectin-9 N-terminal carbohydrate recognition domain. Glycobiology 19, 112-117 (2009).
  2. Bi, S., Earl, L.A., Jacobs, L. & Baum, L.G. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J Biol Chem 283, 12248-12258 (2008).
  3. Baba, M. et al. Galectin-9 inhibits glomerular hypertrophy in db/db diabetic mice via cell-cycle-dependent mechanisms. J Am Soc Nephrol 16, 3222-3234 (2005).
  4. 4.0 4.1 Seki, M. et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 127, 78-88 (2008).
  5. Tsuchiyama, Y. et al. Efficacy of galectins in the amelioration of nephrotoxic serum nephritis in Wistar Kyoto rats. Kidney Int 58, 1941-1952 (2000).
  6. Naka, E.L., Ponciano, V.C., Cenedeze, M.A., Pacheco-Silva, A. & Camara, N.O. Detection of the Tim-3 ligand, galectin-9, inside the allograft during a rejection episode. Int Immunopharmacol 9, 658-662 (2009).
  7. Niwa, H. et al. Stable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic tool for Th1- and/or Th17-mediated skin inflammation. Clin Immunol 132, 184-194 (2009).
  8. Anderson, D.E. TIM-3 as a therapeutic target in human inflammatory diseases. Expert Opin Ther Targets 11, 1005-1009 (2007).


The CFG is grateful to the following PIs for their contributions to this wiki page: Linda Baum, Richard Cummings

Personal tools