Galectin-3

From CFGparadigms

(Difference between revisions)
Jump to: navigation, search
Line 13: Line 13:
Galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 313, 652-664 (2007). </ref>
Galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 313, 652-664 (2007). </ref>
* has anti-apoptotic activity in its intracellular expression<ref>Saegusa, J. et al. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. J Invest Dermatol 128, 2403-2411 (2008).</ref>
* has anti-apoptotic activity in its intracellular expression<ref>Saegusa, J. et al. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. J Invest Dermatol 128, 2403-2411 (2008).</ref>
 +
<br>
 +
Galectin-3 is the only member of the galectin family with an extended N-terminal region composed of tandem repeats of short amino-acid segments (a total of approximately 120 amino acids) connected to a C-terminal CRD. Like other galectins, Galectin-3 lacks a signal sequence required for secretion through the classical secretory pathway, but the protein is released into the extracellular space. <br>
 +
Galectin-3 can oligomerize in the presence of multivalent carbohydrate ligands and is capable of crosslinking glycans on the cell surface, thereby initiating transmembrane signaling events and affecting various cellular functions (reviewed in (1-3)). This ability to self-associate is dependent on the N-terminal region of the protein.
 +
Compared to other galectins, intracellular functions of Galectin-3 have been more extensively documented (reviewed in (4)). In some cases, intracellular proteins with which the protein interacts and which possibly mediate these functions have been identified. Galectin-3 can be phosphorylated at its serine 6 and serine 12 residues (5).
 +
== CFG Participating Investigators contributing to the understanding of this paradigm ==
== CFG Participating Investigators contributing to the understanding of this paradigm ==

Revision as of 17:00, 7 July 2010

Galectin-3...

  • is the only member of chimeric subfamily in mammals
  • is a very well-studied glycan-binding protein (GBP)
  • crystal structure is known
  • has unique functions intra- and extra-cellularly, due to unusual N-terminal domain that can participate in protein-protein interactions
  • has a unique mode of multimerization
  • is the only known anti-apoptotic galectin
  • null mice have distinct phenotypes, including alterations in inflammatory and wound-healing responses, and cyst formation in disease[1]
  • has unique functions in innate immune response to microbial pathogens
  • has been administered in animal models of disease to assess therapeutic potential
  • binds distinct cell surface glycoprotein ligands in lymphocytes compared to Galectin-16
  • expression is involved in growth modulation[2]
  • has anti-apoptotic activity in its intracellular expression[3]


Galectin-3 is the only member of the galectin family with an extended N-terminal region composed of tandem repeats of short amino-acid segments (a total of approximately 120 amino acids) connected to a C-terminal CRD. Like other galectins, Galectin-3 lacks a signal sequence required for secretion through the classical secretory pathway, but the protein is released into the extracellular space.
Galectin-3 can oligomerize in the presence of multivalent carbohydrate ligands and is capable of crosslinking glycans on the cell surface, thereby initiating transmembrane signaling events and affecting various cellular functions (reviewed in (1-3)). This ability to self-associate is dependent on the N-terminal region of the protein. Compared to other galectins, intracellular functions of Galectin-3 have been more extensively documented (reviewed in (4)). In some cases, intracellular proteins with which the protein interacts and which possibly mediate these functions have been identified. Galectin-3 can be phosphorylated at its serine 6 and serine 12 residues (5).


Contents

CFG Participating Investigators contributing to the understanding of this paradigm

CFG Participating Investigators (PIs) contributing to the understanding of Galectin-3 include: Linda Baum, Susan Bellis, Roger Chammas, Richard Cummings, James Dennis, Margaret, Huflejt, Fu-Tong Liu, Joshiah Ochieng, Noorjahan Panjawani, Mauro Perretti, Avram Raz, James Rini, Maria Roque-Barreira, Sachiko Sato, Tariq Sethi, Irma van Die, Gerardo Vasta, John Wang, Paul Winyard

Progress toward understanding this GBP paradigm

Carbohydrate ligands


Cellular expression of GBP and ligands


Biosynthesis of ligands


Structure


Biological roles of GBP-ligand interaction


CFG resources used in investigations

The best examples of CFG contributions to this paradigm are described below, with links to specific data sets. For a complete list of CFG data and resources relating to this paradigm, see the CFG database search results for Galectin-3.

Glycan profiling


Glycogene microarray


Knockout mouse lines

Galectin-3 knockout mice were phenotyped by the CFG and continue to be used by investigators to study the biological functions of Galectin-3.

Glycan array

Investigators have used CFG carbohydrate compounds and glycan arrays to study ligand binding specificity of Galectin-3 (for example, click here). To see all glycan array results for Galectin-3, click here.

Related GBPs

None in mammals, homologues in invertebrates.

References

  1. Chiu, M.G. et al. Galectin-3 associates with the primary cilium and modulates cyst growth in congenital polycystic kidney disease. Am J Pathol 169, 1925-1938 (2006).
  2. Baptiste, T.A., James, A., Saria, M. & Ochieng, J. Mechano-transduction mediated secretion and uptake of Galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 313, 652-664 (2007).
  3. Saegusa, J. et al. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. J Invest Dermatol 128, 2403-2411 (2008).

Acknowledgements

The CFG is grateful to the following PIs for their contributions to this wiki page: Linda Baum, Richard Cummings, Michael Demetriou, Fu-Tong Liu

Personal tools